

Observations

Microcystis blooms have formed in 4 of the past 5 years

- 2002 No bloom
- 2003 Large bloom (August)
- 2004 Medium bloom (July)
- 2005 small bloom (July)
- 2006 Medium bloom (August)

Questions

1. What determines the occurrence and size of blooms?

Observations

Blooms form near Maumee Bay

Questions

1. What determines the occurrence and size of blooms?

2. What is the influence of the Maumee River on blooms?

Observations

Blooms initiate in the same region each year

Questions

- 1. What determines the occurrence and size of blooms?
 - 2. What is the influence of the Maumee River on blooms?
 - 3. What triggers blooms to form just outside of Maumee Bay?

Questions

1. What determines the occurrence and size of blooms?

Examine Total Phosphorus 2002-2006

Western Lake Erie sampling locations

Total Phosphorus: 2002

Total Phosphorus: 2002-03

Risk of cyanobacteria dominance

(Downing, et al. 2001)

Total Phosphorus: 2002-04

Timing of phosphorus may be important

2004: TP maximum in June

2003: TP maximum in July

Questions

2. What is the influence of the Maumee River on blooms?

Maumee River Watershed

Maumee River Watershed

Land Use

(Source data: USGS)

Observations (Part 1)

- 1. Microcystis blooms form in years with high TP concentrations.
- 2. High TP concentrations are associated with high Maumee River flow.
- 3. Seasonal timing of blooms may be associated with timing of river flow (July vs. August).

Questions

- 1. What determines the occurrence and size of blooms?
 - 2. What is the influence of the Maumee River on blooms?
 - 3. What triggers blooms to form just outside of Maumee Bay?

Or

What is it about this location that allows *Microcystis* to outcompete other algae?

Aphanizomenon prevails under conditions of:

Nitrogen-limitation

no mixing

Microcystis prevails under conditions of:

No nitrogen-limitation

Moderate mixing

Microcystis has superior buoyancy

= Aphanizomenon and green algae

Microcystis has superior buoyancy

Mixed plankton

After 1 Hour

After 1 Day

Chlorophyll depth profile

Hypothesis: High turbidity (suspended sediments) in the Maumee River plume gives *Microcystis* an advantage over other green and blue-green algae

Light measurements (2002-04)

Maumee Bay light zones

Three light zones

Inner Maumee Bay

-Shallow (1-2m)
-highly turbid
Light reaches
the bottom

Mid (outside Maumee Bay)

-Deeper (2-5 m)
-highly turbid
Light does <u>NOT</u> reach
the bottom

Outer bay (Open Lake)

-Deeper (5-10 m) - Low turbidity

Light reaches the bottom

Maumee Bay light zones

Average Depth of Light Penetration (1%) July-Aug, 2002-04

Post-Bloom Transition

Aphanizomenon

Nitrate (2003)

Observations (Part 2)

- 1. Maumee Bay has distinct light climates based on turbidity and depth.
- 2. In 2002-2006, *Microcystis* first appeared in areas with greatest potential for light-limitation.
- 3. Seasonal decline in available nitrogen leads to a transition from *Microcystis* to *Aphanizomenon*.

September 2006

Mystery Bloom

Acknowledgements

Joshua Morris Chris Lauber Rachel Lohner Chris Mayer

Chad Ronyetz Kevin Czajkowski Jim Coss REU students

